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Wangshuibai is a Chinese landrace wheat with a high level of resistance to fusarium head blight (FHB) and deoxynivalenol
(DON) accumulation. Using an F7 population of recombinant inbred lines (RILs) derived from the cross between
Wangshuibai and Annong 8455 for molecular mapping of quantitative trait loci (QTL) for FHB resistance, the proportion
of scabbed spikelets (PSS) and DON content were assessed under field conditions. Composite interval mapping revealed
that two and three QTL were significantly associated with low PSS and low DON content, respectively, over 2 years. QTL
on chromosomes 3B and 2A explained 17 and 11·5%, respectively, of the phenotypic variance for low PSS, whereas QTL
on chromosomes 5A, 2A and 3B explained 12·4, 8·5 and 6·2%, respectively, of the phenotypic variance for low DON
content. The 3B QTL appeared to be associated mainly with low PSS, and the 5A QTL primarily with low DON content in
Wangshuibai. The 2A QTL had minor effects on both low PSS and DON content. Microsatellite and AFLP markers linked
to these QTL should be useful for marker-assisted selection of QTL for low PSS and low DNA content from Wangshuibai.
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Introduction

 

Fusarium head blight (FHB), primarily caused by 

 

Fusarium
graminearum

 

, is a devastating and insidious disease of
wheat in humid and semihumid areas worldwide. In
China, FHB has affected more than seven million hectares
of wheat and caused yield losses of more than one million
tonnes in severe epidemics (Yao & Lu, 2000). In the USA,
several severe FHB outbreaks on wheat and barley
from 1991 to 1997 resulted in about $1·3 billion of direct
losses, with a cumulative economic impact of $4·8 billion
of losses (Johnson 

 

et al

 

., 2003), and the disease remains
a threat to wheat production in many other countries (Bai
& Shaner, 2004).

Infected grain is often contaminated with deoxynivalenol
(DON), a mycotoxin mainly produced by 

 

F. graminearum

 

.
As epidemics become more frequent and severe in many
countries, DON contamination of wheat and other small
grain crops is becoming a major concern for animal produc-
tion and human health (reviewed by Desjardins, 2006).

The employment of cultivars with high FHB resistance
and low DON content is the most economical and effective

method to reduce losses caused by FHB (Bai & Shaner,
2004). FHB resistance is quantitatively inherited in wheat.
Although germplasm immune to FHB has not been found,
resistance to FHB and DON accumulation is well docu-
mented in wheat and its relatives (Mesterhazy, 1995;
Buerstmayr 

 

et al

 

., 1996; Bai 

 

et al

 

., 2001; Miedaner 

 

et al

 

.,
2003; Cumagun 

 

et al

 

., 2004).
Advances in molecular marker technology allow the

dissection of quantitative trait loci (QTL) into individual
Mendelian factors and mapping of these QTL to known
chromosome regions (Paterson 

 

et al

 

., 1988). QTL mapping
sets the stage for the acceleration of the crop breeding process
through marker-assisted selection. In the last few years, QTL
for FHB resistance have been extensively studied and most
of the resistance alleles are contributed by resistant
germplasm, such as Sumai 3 and its derivatives (Bai 

 

et al

 

.,
1999; Waldron 

 

et al

 

., 1999; Anderson 

 

et al

 

., 2001;
Zhou 

 

et al

 

., 2002; Buerstmayr 

 

et al

 

., 2002, 2003; Yang

 

et al

 

., 2005), Arina (Paillard 

 

et al

 

., 2004), Frontana
(Steiner 

 

et al

 

., 2004), Ning7840 (Shen 

 

et al

 

., 2003a),
F201 (Shen 

 

et al

 

., 2003b), Renan (Gervais 

 

et al

 

., 2003),
Wangshuibai (Lin 

 

et al

 

., 2004, 2006; Zhou 

 

et al

 

., 2004;
Zhang 

 

et al

 

., 2004; Mardi 

 

et al

 

., 2005), etc. However, most
previous molecular mapping work mainly focused on FHB
symptoms. There is a strong need to identify beneficial
QTL for resistance to DON accumulation in wheat grain.
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The objectives of the present study were to identify
and map QTL for low PSS and/or low DON content
from a recombinant inbred line (RIL) population that
originated from a cross between Wangshuibai and
Annong 8455.

 

Materials and methods

 

Plant materials

 

A total of 118 F7 recombinant inbred lines (RILs) were
derived from the cross of Wangshuibai 

 

×

 

 Annong 8455 by
single-seed descent. Wangshuibai is a landrace originating
from Jiangsu, China. It is one of the best scab-resistant
sources and has been used in many breeding programmes.
Annong 8455 (NPFP 73/Annong 1) is a FHB-susceptible
wheat cultivar released from Anhui Agricultural University
in China with superior grain quality.

The two parents and their F7 RILs were evaluated in
the field with three replicates during the 2003 and 2004
growing seasons at the Jiangsu Academy of Agricultural
Sciences experimental station in Nanjing. Thirty seeds per
line were sown in a 1 m row in each replicate.

 

Evaluation of FHB

 

Conidial inoculum was produced from a mixture of local
highly pathogenic isolates of 

 

F. graminearum

 

 using mung
bean liquid medium (Bai 

 

et al

 

., 2001). A droplet of
conidia (approximately 1000 spores) was injected into
a central floret of selected spikes at anthesis with a hypo-
dermic syringe. Approximately 15 spikes per replicate
were inoculated. Following inoculation, each spike was
covered with a plastic bag for 24 h. Scabbed spikelets and
the total number of spikelets in each inoculated spike were
counted on day 21 after inoculation. Disease severity was
calculated as the proportion of scabbed spikelets (PSS) in
an inoculated spike.

 

DON analysis

 

Seeds of inoculated spikes from each replicate were ground
for DON analysis. The flour sample was extracted by
shaking with acetonitrile-water (86/16, v/v) using 5 mL
solvent per 1 g sample for 2 h. Extracts were purified by
filtration on a column (containing active carbon, aluminium
and diatomite) and twice washed with 2 mL acetonitrile
water. DON in the extract was measured by high-pressure
liquid chromatography (HP1100 HPLC-system; Hewlett-
Packard). A Spherisorb S5 ODZ2250 

 

×

 

 4·6 mm reverse-
phase column (Waters) was used. The mobile phase used
was methanol-water (25/75, v/v) at a flow rate of 1 mL
min

 

−

 

1

 

. The detection wavelength was set at 220 nm.

 

SSR and AFLP analysis

 

DNA from parents and 104 F7 RILs were extracted from
young leaves using the CTAB method (Saghai-Maroof

 

et al

 

., 1984) with minor modifications.

A total of 504 pairs of simple sequence repeat (SSR)
primers were used for parental screening, including 265
GWM SSR primers (Röder 

 

et al

 

., 1998) and 239 BARC
primers (Song 

 

et al

 

., 2005). PCR was performed in a volume
of 25 

 

µ

 

L in a Perkin-Elmer 9600 Thermal Cycler. The
reaction mixture contained 250 nm of each primer,
0·2 m

 

m

 

 of each deoxynucleotide, 1·5 m

 

m

 

 MgCl

 

2

 

, 1 unit

 

Taq

 

 polymerase and 50–100 ng of template DNA. For
PCR amplification, the reaction was incubated at 94

 

°

 

C
for 3 min, then continued for 45 cycles each of 1 min of
denaturing at 94

 

°

 

C, 1 min of annealing at 50, 55 or 60

 

°

 

C
(depending on the SSR primers) and 2 min of extension at
72

 

°

 

C, with a final extension at 72

 

°

 

C for 10 min
For AFLP analysis, genomic DNA was double-digested

with 

 

Eco

 

RI and 

 

Mse

 

I restriction enzymes and ligated to
corresponding AFLP adaptors. A 30 

 

µ

 

L aliquot of pream-
plified PCR mixture consisted of 1 

 

×

 

 PCR buffer, 2·5 m

 

m

 

MgCl

 

2

 

, 0·2 m

 

m

 

 dNTP mix, 75 ng of each adapter-derived
primer and 10 

 

µ

 

L diluted template DNA. PCR was run for
29 cycles at 94

 

°

 

C for 30 s, 56

 

°

 

C for 1 min and 72

 

°

 

C for
1 min. The preamplified PCR product was then used as a
template for further selective amplification. A total of
130 combinations of 

 

Mse

 

I and 

 

Eco

 

RI primers were
screened between parents for polymorphism. For selective
PCR, each 10 

 

µ

 

L of PCR mixture contained 3 

 

µ

 

L 10-
fold-diluted preamplified DNA, 1 

 

×

 

 PCR buffer, 2·5 m

 

m

 

MgCl

 

2

 

, 0·2 m

 

m

 

 dNTP mix, 10 ng 

 

Mse

 

I primer, 0·35 pmol

 

Eco

 

RI primer and 0·2 unit of 

 

Taq

 

 polymerase. PCR was
run for 13 cycles of 94

 

°

 

C for 30 s, 65

 

°

 

C for 30 s with
a temperature reduction of 

 

−

 

0·7

 

°

 

C per cycle in each
following cycle, and 72

 

°

 

C for 60; this was followed by 23
cycles at 94

 

°

 

C for 30 s, 56

 

°

 

C for 30 s and 72

 

°

 

C for 60 s.
The amplified products from SSR and AFLP were

separated in 6% denaturing polyacrylamide gels running
at 80 W. The gel was visualized by silver staining.

 

Data analysis

 

Analyses of variance and correlation were carried out
using SAS software ver.8·2 (SAS Institute Inc). 

 

Joinmap

 

3·0 was used to create a genetic linkage map of SSR
and AFLP markers (Van Ooijen & Voorrips, 2001) and
MapQTL 5 (Van Ooijen, 2004) was used to identify the
locations and effects of QTL. The threshold logarithm of
the odds (LOD) value for claiming a significant QTL was
selected based on a permutation test with 1000 runs.

 

Results

 

Phenotypic performance of RILs

 

The mean, range and distributions of PSS and DON content
for the RIL population and their parents are summarized
in Table 1 and Fig. 1. A wide range of PSS values on the
21st day after inoculation was observed among the RILs,
from 2·4 to 79·0% over 2 years. Wangshuibai exhibited
PSS values of 26·4 and 9·3% in 2003 and 2004, respectively,
compared with 62·0 and 51·9% for Annong 8455. The
population also segregated for DON content, with a
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range of 0–284·5 mg kg

 

−

 

1

 

 over 2 years. The DON content
of Wangshuibai was 2·4 mg kg

 

−

 

1

 

 in 2003 and 5·6 mg kg

 

−

 

1

 

in 2004. Annong 8455 had a DON content of 119·2 mg
kg

 

−

 

1

 

 in 2003 and 36·4 mg kg

 

−

 

1

 

 in 2004.
The mean PSS and DON content for the RIL popu-

lation were significantly higher in 2003 than in 2004.
This was mainly because the more humid weather in 2003
caused a more severe FHB epidemic in the Yangtze river
valley area than in 2004 (Zhu 

 

et al

 

., 2003). However, the
correlation between the 2 years was significant at 

 

P

 

 < 0·01,
with 

 

r

 

 = 0·49 for PSS and 

 

r

 

 = 0·59 for DON content. PSS
was also weakly correlated with DON content, with
correlation coefficients of 0·31 in 2003 and 0·35 in 2004.

 

anova

 

 results showed that genotypic variation was
significant for both PSS and DON content over 2 years
(Table 2). The effects of year and genotype 

 

×

 

 year interac-
tion were also significant. Broad-sense heritabilities for PSS
and DON content were 0·74 and 0·78, respectively, over
2 years (Table 1).

 

Molecular markers

 

After 504 pairs of SSR primers and 130 AFLP primer
combinations were screened for polymorphism between
parents, 112 SSR and 347 AFLP fragments were identified
as polymorphic between the two parents. Among them,
353 markers were mapped on 38 linkage groups covering
a genetic distance of 1594 cM. Of the linkage groups, 29
could be associated to 19 chromosomes according to
previously published map information (Röder 

 

et al

 

., 1998;
Somers 

 

et al

 

., 2004; Song 

 

et al

 

., 2005). Only chromosomes

Table 1 Variation of proportion of scabbed spikelets (PSS) and deoxynivalenol (DON) content in wheat parents and recombinant inbred lines (RILs), 
21 days after inoculation with Fusarium graminearum

Trait Year Wangshuibai Annong 8455

RIL population

Max Min Mean h2a

PSS (%) 2003 26·4 62·0 79·0 15·7 41·7
2004 9·3 52·0 72·8 2·4 13·2
Mean 18·0 57·0 75. 9·0 27·4 0·74

DON content (mg kg−1) 2003 2·4 119·2 284·5 0·0 83·4
2004 5·6 36·4 47·4 0·0 15·1
Mean 4·0 87·8 166·0 0·0 49·2 0·78

aBroad-sense heritability.

Figure 1 Distribution of proportion of scabbed spikelets (PSS) (a) and 
deoxynivalenol (DON) content (b) of F7 recombinant inbred wheat lines 
(derived from a cross between Wangshuibai and Annong 8455) in 2003 
and 2004, 21 days after inoculation with Fusarium graminearum.

Table 2 Analysis of variance for proportion of scabbed spikelets (PSS) and deoxynivalenol (DON) content in wheat parents (Wangshuibai and 
Annong 8455) and recombinant inbred lines (RILs), 21 days after inoculation with Fusarium graminearum

Source d.f.

PSS DON content

MS F-value P MS F-value P

Years 1 40 654 160·69 < 0·001 127 010 159·5015 < 0·001
Replications (within year) 4  253 1·67  0·15  796 2·05  0·09
Genotypes 117 1 247 4·28 < 0·001 4 893 5·12 < 0·001
Genotypes/Years 117  291 1·92 < 0·001  955 2·46 < 0·001
Error 468  151  389
Total 707
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1D and 4D had no mapped SSR markers. Eleven AFLP
linkage groups did not contain any SSR markers and
therefore their chromosome identity was not determined.

QTL mapping

Composite interval mapping was used to detect putative
QTL for low PSSs and low DON content. Three QTL
for low PSS were detected on chromosomes 3B, 2A
and 5A (Table 3, Fig. 2). The QTL on chromosome 3B
was mapped on the short arm and positioned in the
5 cM interval between SSR markers Xgwm533·1 and
Xbarc133 in both years. This QTL explained the largest
portion of the phenotypic variance, with R2 values of 17·9
and 13·3% for 2003 and 2004, respectively. The QTL on
chromosome 2A was also consistent over 2 years. It
was located between SSR marker Xgwm425 and AFLP
marker XmCCT.eAAG.2 and explained 11·9 and 10·0%
of the total phenotypic variance in 2003 and 2004, respec-
tively. The third QTL was located on chromosome 5A and
flanked by SSR marker Xgwm186 and AFLP marker
XmCCA.eAAG.2, but it showed a minor effect, with only
a marginally significant LOD value detected in 2004. All
these QTL were from the resistant parent Wangshuibai
and demonstrated reduced PSS.

Composite interval mapping indicated that the three
QTL on chromosomes 5A, 2A and 3B also contributed
to low DON content in Wangshuibai. However, the rank
of QTL effects on low DON content for each QTL was
different from that for low PSS. The QTL on chromosome
5A had the largest effect on low DON content across
2 years, accounting for 12·7 and 11·1% of the total pheno-
typic variance for low DON content in 2003 and 2004,
respectively. This QTL was positioned in the 5 cM
interval between Xgwm156 and XmCCA.eAAG.2, the
same region as the minor QTL associated with low PSS on
chromosome 5A in 2004. The QTL on chromosomes
2A and 3B explained smaller portions of phenotypic
variation for low DON content than the 5A QTL. The
QTL on 2A was located on the same chromosome region
for low PSS and explained 8·5% of phenotypic variation

of low mean DON content over 2 years. The QTL on
chromosome 3B was linked to different, but closely
linked, markers in 2 years. It was significant only in 2004,
when it explained 5·7% of the phenotypic variation for
low DON. When the means were averaged over 2 years,
this QTL explained 6·2% of the phenotypic variation and
mapped to the same chromosome region for low PSS. All
marker alleles for low-DON QTL were from the resistant
parent Wangshuibai.

Discussion

In the present study, the F7 RIL population derived
from Wangshuibai × Annong 8455 was evaluated for the
proportion of scabbed spikelets (PSS) and DON content
under field conditions over 2 years. The frequency dis-
tributions of the RILs for PSS and DON content revealed
that FHB resistance and low DON content were quanti-
tatively inherited in this population. Similar findings
were reported in previous studies for both traits (Bai &
Shaner, 2004). Phenotypic expression of FHB is affected
by environmental factors. PSS and DON content in 2003
were much higher than in 2004 because a more severe
epidemic occurred in 2003 in the Yangtze river valley of
China. Significant effects of year and genotype × year
interaction for both traits were also found. Despite this,
broad-sense heritabilities over 2 years were high for PSS
and DON content (Table 1), indicating that assessments of
FHB resistance and DON accumulation are reproducible.

Correlations between PSS and DON content have been
extensively studied, but the results from different reports
are inconsistent. High correlations between FHB severity
and DON content were reported in some wheats (Teich
et al., 1987; Miedaner et al., 2001, 2003), but most
studies revealed only low to moderate associations and
correlation coefficients that were strongly influenced
by location and year (Miedaner & Perkowski, 1996;
Mesterhazy et al., 1999; Bai et al., 2001; Somers et al.,
2003). Phenotypic correlation between PSS and DON
content was weak (r = 0·31–0·35) in the present study,
indicating that there are different components of

Table 3 Quantitative trait loci associated with resistance to fusarium head blight and deoxynivalenol (DON) accumulation detected by composite 
interval mapping in the F7 recombinant inbred line wheat population derived from the cross Wabgshuibai × Annong 8455

Traita Chr. Flanking marker

2003 2004 Mean over 2 years

LOD R 2 Add.b LOD R 2 Add. LOD R 2 Add.

PSS 3B Xgwm533·1-Xbarc133 5·03** 17·9 −16·31 2·52** 13·3 −7·07 4·97** 17·0 −13·42
2A Xgwm425-XmCCT.eAAG.2 2·56** 11·9  −4·85 2·03* 10·0 −4·11 2·48** 11·5  −4·37
5A Xgwm186-XmCCA.eAAG.2 – –  – 1·92* 6·4 −3·81 – –  –

DON 5A XmCCA.eAAG.2-Xgwm156 2·46** 12·7  −5·08 2·28** 11·1 −8·17 2·40** 12·4 −7·34
2A Xgwm425-XmCCT.eAAG.2 2·01* 9·9  −4·75 1·96* 7·4 −6·02 1·98* 8·5 −5·96
3B Xbarc102-Xgwm533·1 – –  – 1·83* 5·7 −5·60 – –  –

Xgwm533·1-Xbarc133 – –  – – – – 1·89* 6·2 −4·82

*,**, correspond to 0·05 and 0·01 significance levels, respectively, for the closest marker based on 1000 permutations.
aPSS, proportion of scabbed spikelets, DON, deoxynivalenol content; 21 days after inoculation with Fusarium graminearum.
bAdditive effect of Wangshuibai allele.
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resistance: resistance to disease spread and to toxin
accumulation.

In the Wangshuibai × Annong 8455 population, putative
QTL associated with resistance to FHB were detected on
chromosomes 3B, 2A and 5A. The QTL on chromosome

3B showed the largest effect on phenotypic FHB resistance
and explained 17·0% of the phenotypic variance
over 2 years. This QTL was previously identified as a
main-effect QTL for FHB resistance in Wangshuibai (Lin
et al., 2004; Zhou et al., 2004; Zhang et al., 2004; Mardi
et al., 2005). A QTL from a similar chromosome region
with a major effect on FHB resistance was also reported
in several other cultivars from China, such as Sumai3,
Ning 894037 and Huapei 57-2. (Waldron et al., 1999;
Anderson et al., 2001; Buerstmayr et al., 2002; Zhou
et al., 2002, 2004; Bourdoncle & Ohm, 2003; Shen et al.,
2003b). In Sumai 3 and its derivatives, this QTL for FHB
resistance was mapped to the distal end of chromosome
3BS (Waldron et al., 1999; Zhou et al., 2002). Based on its
linked markers, the QTL from Wangshuibai also located
in the same region and is likely to be the same QTL as that
of Sumai 3. However, the QTL in Wangshuibai had less
effect on FHB resistance than that from Sumai 3, and the
banding pattern of linked SSR markers was different
from that in Sumai 3, suggesting that the 3BS QTL in
Wangshuibai is most likely allelic to the 3BS QTL in
Sumai 3. Wangshuibai has no evident association with
Sumai 3 in its pedigree. Some researchers showed that the
resistance QTL on chromosome 3BS in Sumai 3 was
derived from Taiwan wheat (Zhou et al., 2002); therefore
the possibility cannot be ruled out of a potential genetic
relationship between the two varieties, because Wang-
shuibai and Taiwan wheat both originated from the
Yangtze river valley in China.

In addition to the QTL on chromosome 3BS, QTL with
smaller, but significant, effects for phenotypic FHB
resistance were located on chromosomes 2A and 5A. QTL
associated with FHB resistance on chromosome 2A were
found from other wheat varieties (Waldron et al., 1999;
Anderson et al., 2001; Zhou et al., 2002; Paillard et al.,
2004; Steiner et al., 2004). However, the chromosome
location was not consistent between studies. The FHB
QTL was mapped at the end of chromosome 2AS of
Ning7840 (a derivation from Sumai3) (Zhou et al., 2002),
but on the end of chromosome 2AL in Stoa and Arina
(Waldron et al., 1999; Anderson et al., 2001; Paillard
et al., 2004). In the present study, the QTL was located
near the centromere of chromosome 2A and had a smaller
effect than the QTL on chromosome 3BS, which suggests
that the QTL from divergent sources are different. The
QTL on chromosome 5A was only detected in 2004,
indicating that the QTL has a minor effect on PSS. Lin
et al. (2006) identified a QTL associated with spread
resistance to FHB on chromosome 5A in Wangshuibai,
but it seemed to be in a different region on chromosome
5A from that in the present study.

QTL for low DON content were detected on chromo-
somes 5A, 2A and 3B. The QTL on chromosomes 3B and
2A were mapped to the same genomic region as for low
PSS. The QTL on chromosome 5A overlapped with the
QTL for low PSS in 2004. This QTL for low PSS was also
reported in CM-82036 (Buerstmayr et al., 2002), DH181
(Yang et al., 2005), Frontana (Steiner et al., 2004), Renan
(Gervais et al., 2003) and Patterson (Shen et al., 2003a).

Figure 2 Portion of genetic linkage map derived from F7 recombinant 
inbred wheat lines showing chromosome positions of putative 
quantitative trait loci (QTL) associated with resistance to fusarium head 
blight and deoxynivalenol (DON) accumulation over 2 years. Solid lines 
show QTL associated with low average proportion of scabbed 
spikelets (PSS) over 2 years; dotted lines show QTL associated 
with low average DON content over 2 years.
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Somers et al. (2003) reported a QTL controlling DON
accumulation on chromosome 5AS linked to marker
Xgwm96 in Maringa. The SSR marker Xgwm96 was
located on chromosome 5AL near the centromere on the
consensus map (Somers et al., 2004), about 6 cM from
Xgwm156. Xgwm156 was the closest marker to the LOD
peak of the QTL for low DON content in present study.
The 3B and 5A QTL had contrasting effects on resistance
to phenotypic FHB and DON accumulation. The 3B QTL
had a much larger effect than the 5A QTL for FHB
resistance, whereas 5A QTL had a much larger effect than
the 3B QTL for resistance to DON accumulation. This
indicates that the 3B QTL may contribute more to pheno-
typic FHB resistance, whereas the 5A QTL appears to
play an important role in resistance to DON accumula-
tion. However, whether resistance to DON accumulation
is independent of resistance to disease severity is still
equivocal, because disease severity may affect kernel
development. DON is usually measured from harvested
grains; if infected, the ovary may never develop into a
mature kernel, and thus the DON content in the harvested
grain may be lower than might be expected based on
intensity of head blight symptoms.

In this study, several SSR markers were identified as
associated with QTL for both low PSS and low DON on
chromosomes 2A, 3B and 5A. Their availability will
facilitate marker-assisted selection to obtain improved
lines by pyramiding both resistances to phenotypic FHB
and DON accumulation in wheat breeding and enabling
transfer of the resistance genes from Wangshuibai.
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